E. SOLID OXIDE FUEL CELLS AND DEPARTMENT OF DEFENSE APPLICATIONS

Herbert Dobbs, National Automotive Center, TACOM

Solid Oxide Fuel Cells and Defense Applications

Solid State Energy Conversion Alliance (SECA)
Workshop

1 June, 2000

Herbert H. Dobbs, Jr.
Team Leader, Alternative Fuels and Fuel Cells
TACOM National Automotive Center

Tank-automotive & Armaments COMmand

SOFC's and Defense Applications Outline

- Armed Services Interests
- Fuel The sulfur problem
- Efficiency A key logistic issue
- PEM versus SOFC
- A way forward in ground vehicles
- Wrap up

As of: 1 June 00

Committed to Excellence

SOFC's and Defense Applications

Military Fuel Cell Applications

- Navy
 - Ship service power
 - Ship Propulsion
- Air Force
 - Bare Base tent city power
 - Flight line generator replacement
- Army and Marines
 - Ground vehicle APUs and propulsion
 - Mobile Generators
 - Soldier Power

As of: 1 June 00

Committed to Excellence

0./

SOFC's and Defense Applications

Fuel - The sulfur problem

- Navy
 - Ship fuel allows up to 10,000 ppm sulfur
 - JP-5 jet fuel allows up to 4,000 ppm
- Air Force and Ground Forces
 - JP-8 is the single peacetime and battlefield fuel
 - 3,000 ppm S limit
- Overseas fuels can have very high sulfur levels
- Historically low JP-5/8 sulfur levels are increasing

As of: 1 June 00

Committed to Excellence

SOFC's and Defense Applications

Efficiency and Emissions

- The U.S. has moved from forward basing to force projection
- Logistic support structures must be kept small
 - Less vulnerable supply systems
 - Faster to deploy
 - Less expensive in peace or war
- 70% of the Army's bulk supply burden is fuel
- Emissions are a real military concern
 - Most military activity is peacetime
 - Military trucks are affected now ships and aircraft later

As of: 1 June 00

Committed to Excellence

- /

SOFC's and Defense Applications

PEM: Advantages and Issues

- Advantages
 - PEM fuel cells are available
 - Good efficiency
 - High rate of commercial investment in PEM technology
- Issues
 - Difficult cooling in high ambient temperature
 - Noble metal catalysts cost and scarcity
 - Complex reformer
 - · Poor sulfur tolerance
 - Must remove carbon monoxide
 - Penalizes efficiency and power density

As of: 1 June 00

Committed to Excellence

SOFC's and Defense Applications

SOFC: Advantages and Issues

- Advantages
 - Excellent integration with simplified reformer
 - Potential efficiency of combined cycle
 - Heat rejection is much easier
 - Promotes high power density propulsion systems
 - · Long term military vehicle propulsion candidate
- Issues
 - Much less mature than PEM
 - Scale up to large vehicle systems
 - Slow startup

As of: 1 June 00

Committed to Excellence

7/

SOFC's and Defense Applications

A Way Forward in Ground Vehicles

- SOFCs offer excellent features for future heavy vehicles, especially military vehicles
- Commercial success of SOFCs is the key to broad military adoption
- Long haul truck Auxiliary Power Units (APUs) are a major commercial entry point for SOFCs
 - Solution to anti-idling restrictions
 - Support for separately-powered engine accessories
- The APU builds the base for SOFC engines

As of: 1 June 00

Committed to Excellence

SOFC's and Defense Applications CONTACT

Herbert Dobbs, Jr.

Mailing Address:

U.S. Army TACOM National Automotive Center AMSTA-TR-N/272 (Dobbs) Warren, MI 48397-5000

(810) 574-4228 (voice) (810) 574-4224 (fax)

dobbsh@tacom.army.mil

As of: 1 June 00

Committed to Excellence